ChasePlastics®

Redefining Resin Distribution®

Real solutions. Real metal to plastic choices.

Industry regulations and consumer demands change frequently - and as a result, so do your product needs. Let us help you understand how to reduce your product's weight and cost all while maintaining performance and quality.

Benefits of choosing plastic over metal:

- Cost reduction
- ▶ Design freedom
- Weight reduction
- ▶ Secondary operation elimination

Typical metal die-cast competition:

- ▶ Aluminum
- Magnesium
- ▶ Zinc

Type of Material	Abbreviation(s)	Recommended Tool Temperature (°C)	Hot Water Moldable	Surface Appearance	Heat Deflection at 264 psi (°C)	Tensile Strength (MPa)	Flexural Modulus (MPa)	Wear and Friction	Chemical Resistance	Company and Tradename	Advantages
High Performance Polyamide	HPPA	80-140	Yes	Better	255	285	21,500	Better	Better	Solvay Omnix® HPPA	Excellent colorability Higher heat resistance and lower moisture uptake than PA 6/6
Polyamide 4/6	PA 4/6	80-120	Yes	Better	290	260	18,500	Best	Better	DSM Stanyl [®] Nylon 4/6	High crystallinity results in superior high heat resistance, wear and friction performance Great retention of mechanicals even at elevated temperatures
Polyamide 4T	PA 4T	100-150	_	Better	323	280	18,000	Better	Better	DSM ForTii® Ace Nylon 4T	Great blister resistance for reflow soldering Good resistance to salts that attack PA 6 and PA 6/6
Polyamide 66/6I	PA 66/6I	65-120	Yes	Best	255	250	16,400	Better	Better	Asahi Kasei Leona™ Aromatic Polyamide 6/6	Excellent flowabilityGreat paintability and weatherability
Polyarylamide	PARA, PA MXD6	120-160	_	Best	255	290	33,000	Better	Better	Mitsubishi Reny™ Polyamide MXD6 Solvay Ixef® PARA	Low moisture uptake for great dimensional stability Great retention of mechanicals even at elevated temperatures
Polyetherimide	PEI	135-165	_	Better	212	179	11,700	Better	Better	SABIC Specialties business ULTEM™ resin (PEI)	 Inherently V-0 flame rated Good clarity Plateable Fire-Smoke-Toxicity (FST) compliant
Polyphenylene Sulfide	PPS	135-150	_	Best	270	212	20,800	Better	Best	Solvay Ryton® PPS and PPS Alloys	 Low moisture uptake for great dimensional stability Inherently V-0 flame rated
Polyphthalamide	PPA	65-180	Yes	Better	310	280	22,800	Better	Better	DSM ForTii® PPA Solvay Amodel® PPA	 Lower and slower moisture uptake than PA 6/6 Great retention of mechanicals even at elevated temperatures and high humidity

^{*}HDT, Tensile, and Flex all based on grade with the highest value

Long fiber compounds: LNP™ VERTON™ from SABIC Specialties business

Advantages

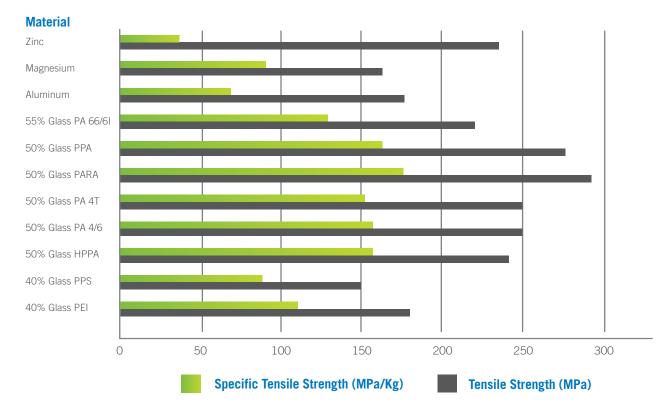
- Hot water moldable grades available
- High stiffness and heat deflection
- Availability in many different base resins

Specific Gravity Comparison

Specific Gravity (g/cm³)
6.5
1.74
2.7
1.64
1.67
1.65
1.66
1.62
1.59
1.69
1.61

6467 Waldon Center Drive, Clarkston, MI 48346 248-620-2120 • orders 800-232-4273 fax 248-620-3192

ChasePlastics.com



Weight vs. Strength Comparison

Plastics show greater specific strength* compared to metals, allowing applications to meet the strength requirements while reducing weight

^{*}Specific strength is a material's strength (force per unit area at failure) divided by its density. It is also known as the strength-to-weight ratio or strength/weight ratio.

The marks identified herein are registered trademarks of their respective owners. Any recommendation by Chase Plastics' personnel for the use of any material is based on tests or experience believed to be reliable. However, since the final processing and use of the product are beyond our control, we make no warranty as to such use or effects incidental to such use, handling or sale. © August 2019, Chase Plastic Services, Inc.